Numerical Modeling of Heat Affected Zone Cracking Tendency during Laser and Hybrid Laser-Arc Welding Processes
نویسنده
چکیده
A two-dimensional thermal elasto-plastic numerical model is developed by finite element method to analyze and compare the mechanical driving factor for heat affected zone (HAZ) liquation cracking during laser welding and hybrid laser-arc welding techniques. Calculations of transient temperatures and cooling rates are used in conjunction with solidification theory to analyze weld pool characteristics during weld-metal solidification. The model is successfully verified by comparing calculated and experimental weld bead geometry and secondary dendrite arm spacing within the weld solidification microstructure. Computational analyses by the model provide valuable insights both into the influence of welding parameters on thermally induced strain rate gradient, which influences cracking, and possible reduced HAZ cracking tendency with the application of hybrid laser-arc welding compared to ordinary laser beam welding.
منابع مشابه
Numerical and Experimental Study of Geometrical Dimensions on Laser-TIG Hybrid Welding of Stainless Steel 1.4418
In this paper, a three-dimensional finite element model has been developed to simulate the laser-TIG hybrid welding (HLAW) of stainless steel 1.4418 with thickness of 4 mm. Transient temperature profile and dimensions of the fusion zone and heat affected zone (HAZ) during welding process are calculatedusing finite element method (FEM) and were solved in the ABAQUS/Standard software.The heat sou...
متن کاملNumerical and Experimental Study of Geometrical Dimensions on Laser-TIG Hybrid Welding of Stainless Steel 1.4418
In this paper, a three-dimensional finite element model has been developed to simulate the laser-TIG hybrid welding (HLAW) of stainless steel 1.4418 with thickness of 4 mm. Transient temperature profile and dimensions of the fusion zone and heat affected zone (HAZ) during welding process are calculatedusing finite element method (FEM) and were solved in the ABAQUS/Standard software.The heat sou...
متن کاملNumerical Simulation Of Heat Affected Zone Microstructure During Laser Surface Melting
Microstructural changes during laser welding and laser surface treatment has been regarded by many researchers. Most researches have focused on studying the effect of various process parameters on the size and microstructure of the heat affected zone. But some studies show that the initial microstructure of the base metal can also affect the heat affected zone dimensions and final microstructur...
متن کاملD finite element modeling of the thermally induced residual stress in the hybrid aser/arc welding of lap joint
In this study, a three-dimensional (3D)finite elementmodel is developed to investigate thermally induced stress field during hybrid laser–gas tungsten arc welding (GTAW) process. In the hybridwelding case, we focus on the GTAWprocess sharing commonmolten poolwith laser beam and playing an augment role in thehybridweldingsystem.Anexperiment-based thermalanalysis isperformedtoobtain the temperatu...
متن کاملAnalysis of Cracks in the Pulsed Nd:YAG Laser Welded Joint of Nickel-Based Superalloy
The weldability of GTD-111 nickel-based superalloy by pulsed Nd:YAG laser welding with an average power of 250 W was studied, and the microstructural evolution and cracking characteristics were also investigated. The solidification cracking of the fusion zone (FZ) and the intergranular liquation cracking in the heat affected zone (HAZ) were observed in the joint. Solidification cracking was cau...
متن کامل